Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Chemosphere ; 356: 141929, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604520

RESUMEN

The cleaning and utilization of industry wastewater are still a big challenge. In this work, we mainly investigate the effect of electron transfer among multi-interfaces on water electrolysis reaction. Typically, the CoS2, Co3S4/CoS2 (designated as CS4-2) and Co3S4/Co9S8/CoS2 (designated as CS4-8-2) samples are prepared on a large scale by one-step molten salt method. It is found that because of the different work functions (designated as WF; WF(Co3S4) = 4.48eV, WF(CoS2) = 4.41eV, WF(Co9S8) = 4.18 eV), the effective heterojunctions at the multi-interfaces of CS4-8-2 sample, which obviously improve interface charge transfer. Thus, the CS4-8-2 sample shows an excellent oxygen evolution reaction (OER) activity (134 mV/10 mA cm-2, 40 mV dec-1). The larger double-layer capacitance (Cdl = 17.1 mF cm-2) of the CS4-8-2 sample indicates more electrochemical active sites, compared to the CoS2 and CS4-2 samples. Density functional theory (DFT) calculation proves that due to interface polarization under electric field, the multi-interfaces effectively promote electron transfer and regulate electron structure, thus promoting the adsorption of OH- and dissociation of H2O. Moreover, an innovative norfloxacin (NFX) electrolytic cell (EC) is developed through introducing NFX into the electrolyte, in which efficient NFX degradation and hydrogen production are synergistically achieved. To reach 50 mA cm-2, the required cell voltage of NFX-EC has decreased by 35.2%, compared to conventional KOH-EC. After 2h running at 1 V, 25.5% NFX was degraded in the NFX EC. This innovative NFX-EC is highly energy-efficient, which is promising for the synergistic cleaning and utilization of industry wastewater.


Asunto(s)
Electrólisis , Hidrógeno , Aguas Residuales , Agua , Hidrógeno/química , Aguas Residuales/química , Agua/química , Transporte de Electrón , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos , Oxígeno/química , Electrones
2.
Nat Commun ; 15(1): 1247, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341404

RESUMEN

Midlobular hepatocytes are proposed to be the most plastic hepatic cell, providing a reservoir for hepatocyte proliferation during homeostasis and regeneration. However, other mechanisms beyond hyperplasia have been little explored and the contribution of other hepatocyte subpopulations to regeneration has been controversial. Thus, re-examining hepatocyte dynamics during regeneration is critical for cell therapy and treatment of liver diseases. Using a mouse model of hepatocyte- and non-hepatocyte- multicolor lineage tracing, we demonstrate that midlobular hepatocytes also undergo hypertrophy in response to chemical, physical, and viral insults. Our study shows that this subpopulation also combats liver impairment after infection with coronavirus. Furthermore, we demonstrate that pericentral hepatocytes also expand in number and size during the repair process and Galectin-9-CD44 pathway may be critical for driving these processes. Notably, we also identified that transdifferentiation and cell fusion during regeneration after severe injury contribute to recover hepatic function.


Asunto(s)
Hepatopatías , Regeneración Hepática , Animales , Regeneración Hepática/fisiología , Hígado/metabolismo , Hepatocitos/metabolismo , Hepatopatías/metabolismo , Modelos Animales de Enfermedad , Proliferación Celular
3.
J Control Release ; 366: 585-595, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215987

RESUMEN

Cholesterol is an indispensable component of most liposomes, heavily influencing their physical and surface properties. In this study, cholesterol in non-PEGylated liposomes was replaced by its analog, asiatic acid (AA), to generate liposomes with an alternative composition. These AA liposomes are generally smaller and more rigid than conventional liposomes, circulate longer in the body, and accumulate more in primary tumors and lung metastases in vivo. On the other hand, as an active ingredient, AA can decrease TGF-ß secretion to inhibit the epithelial-mesenchymal transition (EMT) process, increase the sensitivity of tumor cells to doxorubicin (DOX), and synergize with DOX to enhance the immune response, thus improving their antitumor and anti-metastasis efficiency. Based on this rationale, DOX-loaded AA liposomes were fabricated and tested against triple-negative breast cancer (TNBC). Results showed that compared with conventional liposomes, the DOX-AALip provided approximately 28.4% higher tumor volume reduction with almost no metastatic nodules in the mouse model. Our data demonstrate that AA liposomes are safe, simple, and efficient, and thus in many situations may be used instead of conventional liposomes, having good potential for further clinical translational development.


Asunto(s)
Colesterol , Doxorrubicina/análogos & derivados , Liposomas , Triterpenos Pentacíclicos , Ratones , Animales , Línea Celular Tumoral , Polietilenglicoles
4.
J Clin Invest ; 134(4)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175710

RESUMEN

Blood vessels are continually exposed to circulating lipids, and elevation of ApoB-containing lipoproteins causes atherosclerosis. Lipoprotein metabolism is highly regulated by lipolysis, largely at the level of the capillary endothelium lining metabolically active tissues. How large blood vessels, the site of atherosclerotic vascular disease, regulate the flux of fatty acids (FAs) into triglyceride-rich (TG-rich) lipid droplets (LDs) is not known. In this study, we showed that deletion of the enzyme adipose TG lipase (ATGL) in the endothelium led to neutral lipid accumulation in vessels and impaired endothelial-dependent vascular tone and nitric oxide synthesis to promote endothelial dysfunction. Mechanistically, the loss of ATGL led to endoplasmic reticulum stress-induced inflammation in the endothelium. Consistent with this mechanism, deletion of endothelial ATGL markedly increased lesion size in a model of atherosclerosis. Together, these data demonstrate that the dynamics of FA flux through LD affects endothelial cell homeostasis and consequently large vessel function during normal physiology and in a chronic disease state.


Asunto(s)
Aterosclerosis , Lipasa , Ratones , Animales , Triglicéridos/metabolismo , Lipasa/genética , Lipasa/metabolismo , Lipólisis , Metabolismo de los Lípidos , Endotelio Vascular/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo
5.
Sensors (Basel) ; 23(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37960518

RESUMEN

Tool frame calibration has been widely used in robot-assisted printing, welding, and grinding, but it is not suitable for ultrasonic testing because the robot is submerged in water. The purpose of this paper is to present a tool frame calibration method, which is suitable for improving the precision of ultrasonic testing. In uniform mediums, sound travels along a straight line like ray. A reflector is fixed in water to reflect ultrasound, which makes it possible to measure distances between incidence points on a reflector and tool center point (TCP) on an ultrasound transducer. In addition, the positions and poses of the end flange are recorded through a robot controller. Finally, an optimization method is applied to calculate the position and pose errors of the tool frame relative to the end flange according to such records. The presented method was implemented in an ultrasonic testing system. We selected 100 incidence points on the reflector to calculate the assembly errors of the transducer. The pulse amplitude rose obviously after calibration, which verifies that this is an effective method. Considering that ultrasonic transducers can be used as a measuring tool, this paper proposes a tool frame calibration method for ultrasonic testing robots without introducing other measuring devices, which draws the conclusion that tool frame can be calibrated through ultrasound.

6.
Pulm Circ ; 13(2): e12220, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37091121

RESUMEN

Approximately 50% of patients who recover from the acute SARS-CoV-2 experience Post Acute Sequelae of SARS-CoV-2 infection (PASC) syndrome. The pathophysiological hallmark of PASC is characterized by impaired system oxygen extraction (EO2) on invasive cardiopulmonary exercise test (iCPET). However, the mechanistic insights into impaired EO2 remain unclear. We studied 21 consecutive iCPET in PASC patients with unexplained exertional intolerance. PASC patients were dichotomized into mildly reduced (EO2peak-mild) and severely reduced (EO2peak-severe) EO2 groups according to the median peak EO2 value. Proteomic profiling was performed on mixed venous blood plasma obtained at peak exercise during iCPET. PASC patients as a group exhibited depressed peak exercise aerobic capacity (peak VO2; 85 ± 18 vs. 131 ± 45% predicted; p = 0.0002) with normal systemic oxygen delivery, DO2 (37 ± 9 vs. 42 ± 15 mL/kg/min; p = 0.43) and reduced EO2 (0.4 ± 0.1 vs. 0.8 ± 0.1; p < 0.0001). PASC patients with EO2peak-mild exhibited greater DO2 compared to those with EO2peak-severe [42.9 (34.2-41.2) vs. 32.1 (26.8-38.0) mL/kg/min; p = 0.01]. The proteins with increased expression in the EO2peak-severe group were involved in inflammatory and fibrotic processes. In the EO2peak-mild group, proteins associated with oxidative phosphorylation and glycogen metabolism were elevated. In PASC patients with impaired EO2, there exist a spectrum of PASC phenotype related to differential aberrant protein expression and cardio-pulmonary physiologic response. PASC patients with EO2peak-severe exhibit a maladaptive physiologic and proteomic signature consistent with persistent inflammatory state and endothelial dysfunction, while in the EO2peak-mild group, there is enhanced expression of proteins involved in oxidative phosphorylation-mediated ATP synthesis along with an enhanced cardiopulmonary physiological response.

7.
Artículo en Inglés | MEDLINE | ID: mdl-36780196

RESUMEN

Uncontrolled growth of lithium dendrites and huge volume change during the lithium plating/stripping process as well as poor mechanical properties of the solid electrolyte interphase (SEI) are key obstacles to the development of a stable Li metal anode. Here, an ultralight Mg3N2-modified carbon foam (CF-Mg3N2) was fabricated as a collector to address these issues. The calculated results show that the CF-Mg3N2 composite is relatively stable in terms of energy. Based on the synergistic effect of the three-dimensional skeleton and the lithiophilic nature of Mg3N2, homogeneous lithium deposition/stripping was realized around the foam carbon skeleton with an extremely low nucleation overpotential (∼9.3 mV) and high retention of Coulombic efficiency (99.3%) as well as long cyclability (700 cycles and 3000 h in half and symmetrical cells, respectively). Meanwhile, Mg3N2-CF@Li//LiFePO4 full cells also showed better rate capability and more stable cycling capability than CF@Li//LiFePO4 and Li//LiFePO4 cells, exhibiting extreme practicality. Accordingly, the design concept mentioned in this work provides a far-reaching influence on the development of a stable Li metal anode.

8.
Acta Pharmacol Sin ; 44(4): 832-840, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36271156

RESUMEN

Liposomes decorated with tumour-targeting cell-penetrating peptides can enhance specific drug delivery at the tumour site. The TR peptide, c(RGDfK)-AGYLLGHINLHHLAHL(Aib)HHIL, is pH-sensitive and actively targets tumour cells that overexpress integrin receptor αvß3, such as B16F10 melanoma cells. Liposomes can be modified with the TR peptide by two different methods: utilization of the cysteine residue on TR to link DSPE-PEG2000-Mal contained in the liposome formula (LIPTR) or decoration of TR with a C18 stearyl chain (C18-TR) for direct insertion into the liposomal phospholipid bilayer through electrostatic and hydrophobic interactions (LIPC18-TR). We found that both TR and C18-TR effectively reversed the surface charge of the liposomes when the systems encountered the low pH of the tumour microenvironment, but LIPC18-TR exhibited a greater increase in the charge, which led to higher cellular uptake efficiency. Correspondingly, the IC50 values of PTX-LIPTR and PTX-LIPC18-TR in B16F10 cells in vitro were 2.1-fold and 2.5-fold lower than that of the unmodified PTX-loaded liposomes (PTX-LIP), respectively, in an acidic microenvironment (pH 6.3). In B16F10 tumour-bearing mice, intravenous administration of PTX-LIPTR and PTX-LIPC18-TR (8 mg/kg PTX every other day for a total of 4 injections) caused tumour reduction ratios of 39.4% and 56.1%, respectively, compared to 20.8% after PTX-LIP administration. Thus, we demonstrated that TR peptide modification could improve the antitumour efficiency of liposomal delivery systems, with C18-TR presenting significantly better results. After investigating different modification methods, our data show that selecting an adequate method is vital even when the same molecule is used for decoration.


Asunto(s)
Liposomas , Neoplasias , Ratones , Animales , Liposomas/química , Paclitaxel/química , Sistemas de Liberación de Medicamentos/métodos , Péptidos/química , Línea Celular Tumoral , Microambiente Tumoral
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 266: 120407, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34600323

RESUMEN

Hydrogen sulfide (H2S), a recognized environmental pollutant, comes from a wide range of sources. For example, H2S will be produced in the process of plant protein corruption, the decomposition of domestic sewage and garbage, food processing (wine brewing), etc. and once the concentration is too high, it will cause significant damage of environment and human body. Besides H2S is an important gas signal molecule in vivo, which can be transferred through lipid membrane. Its existence level is closely related to many diseases. If we can "visually" trace the transmembrane transmission of hydrogen sulfide, it will be very helpful for the study of oxidative stress processes, cell protection, signal transduction and related diseases closely related to H2S. Although some probes can detect H2S in environment, cytoplasm and organelles, there are few reports on the release and internalization of H2S. In this work, we report a H2S fluorescence probe that can retain on the cell membrane, named PCM. The probe PCM can not only detect endogenous and exogenous H2S, but also distinguish them, this provides a general strategy for the construction of probes to detect other biomarkers. In addition, PCM has been successfully applied to the detection of endogenous and exogenous H2S in zebrafish, which has the potential to become a new chemical tool and provide help for the research of H2S-related diseases.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Animales , Células HeLa , Humanos , Microscopía Fluorescente , Imagen Óptica , Pez Cebra
10.
Nanoscale ; 13(36): 15267-15277, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34477185

RESUMEN

Metastasis is a major sign of malignant tumors which plays a vital role in cancer-related death. Suppressing metastasis is an important way to improve the survival rate of cancer patients. Herein, multifunctional PEG-LAM-PPS nanoparticles (nPLPs) are fabricated as both nanocarriers and anti-metastatic agents for tumor treatment. In this system, laminarin sulfate (LAM) suppresses metastasis by reducing heparinase and protecting the extracellular matrix; the ROS-sensitive polypropylene sulfide (PPS) improves the release of the loaded drug in the tumor microenvironment. This is the first time that laminarin sulfate has been used as a carrier to inhibit the expression of heparinase and treat melanoma lung metastasis. The blank nanoparticles are excellently safe and showed high anti-metastatic efficacy in melanoma lung metastatic mouse models, reducing metastatic nodules by 60%. They significantly improved the anti-tumor efficacy of the loaded drug doxorubicin, provided ∼33% further reduction of the tumor volume and 50% further reduction of the metastatic nodule number compared with free doxorubicin. Thus, these simple and versatile micellar nanoparticles composed of biocompatible materials offer a promising vehicle for treating invasive solid tumors and metastases.


Asunto(s)
Antineoplásicos , Nanopartículas , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Regulación hacia Abajo , Doxorrubicina/farmacología , Liasa de Heparina , Humanos , Ratones , Micelas , Especies Reactivas de Oxígeno
11.
Biomater Sci ; 9(16): 5599-5611, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34250995

RESUMEN

Pancreatic carcinoma elevates quickly and thus has a high mortality rate. Therefore, early treatment is essential for treating pancreatic carcinoma. KRAS is the most frequently identified and one of the earliest mutations in pancreatic tumorigenesis. Thus, the KRAS-mutant cell is an ideal target for the treatment of pancreatic carcinoma, especially at the early stage. KRAS mutation increases macropinocytosis in pancreatic cancer cells, enhancing the internalization of exosomes. Because acquiring natural exosomes could be laborious and their encapsulation efficiency is often unsatisfactory, we aimed to develop a delivery system that mimics the Kras-mutant cell targeting capability of exosomes but is easier to generate and has better loading efficiency. For this purpose, we constructed a hybrid nanoplatform by fusing CLT (Celastrol)-Loaded PEGylated lipids with the DC2.4 cell membrane (M-LIP-CLT) to achieve targeted treatment of Kras-mutant pancreatic cancer. This hybrid nanoplatform improved CLT tumor accumulation and showed excellent anti-cancer efficiency both in vitro and in vivo with increased safety. These results suggest that M-LIP-CLT is an effective drug delivery system for targeted therapy against pancreatic carcinoma, and the fusion strategy showed attractive potential for further development.


Asunto(s)
Exosomas , Neoplasias Pancreáticas , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Exosomas/genética , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Pancreáticas
12.
bioRxiv ; 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33655244

RESUMEN

Complement activation has been implicated in the pathogenesis of severe SARS-CoV-2 infection. However, it remains to be determined whether increased complement activation is a broad indicator of critical illness (and thus, no different in COVID-19). It is also unclear which pathways are contributing to complement activation in COVID-19, and, if complement activation is associated with certain features of severe SARS-CoV-2 infection, such as endothelial injury and hypercoagulability. To address these questions, we investigated complement activation in the plasma from patients with COVID-19 prospectively enrolled at two tertiary care centers. We compared our patients to two non-COVID cohorts: (a) patients hospitalized with influenza, and (b) patients admitted to the intensive care unit (ICU) with acute respiratory failure requiring invasive mechanical ventilation (IMV). We demonstrate that circulating markers of complement activation (i.e., sC5b-9) are elevated in patients with COVID-19 compared to those with influenza and to patients with non-COVID-19 respiratory failure. Further, the results facilitate distinguishing those who are at higher risk of worse outcomes such as requiring ICU admission, or IMV. Moreover, the results indicate enhanced activation of the alternative complement pathway is most prevalent in patients with severe COVID-19 and is associated with markers of endothelial injury (i.e., Ang2) as well as hypercoagulability (i.e., thrombomodulin and von Willebrand factor). Our findings identify complement activation to be a distinctive feature of COVID-19, and provide specific targets that may be utilized for risk prognostication, drug discovery and personalized clinical trials.

13.
Blood Adv ; 5(5): 1164-1177, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33635335

RESUMEN

Pathologic immune hyperactivation is emerging as a key feature of critical illness in COVID-19, but the mechanisms involved remain poorly understood. We carried out proteomic profiling of plasma from cross-sectional and longitudinal cohorts of hospitalized patients with COVID-19 and analyzed clinical data from our health system database of more than 3300 patients. Using a machine learning algorithm, we identified a prominent signature of neutrophil activation, including resistin, lipocalin-2, hepatocyte growth factor, interleukin-8, and granulocyte colony-stimulating factor, which were the strongest predictors of critical illness. Evidence of neutrophil activation was present on the first day of hospitalization in patients who would only later require transfer to the intensive care unit, thus preceding the onset of critical illness and predicting increased mortality. In the health system database, early elevations in developing and mature neutrophil counts also predicted higher mortality rates. Altogether, these data suggest a central role for neutrophil activation in the pathogenesis of severe COVID-19 and identify molecular markers that distinguish patients at risk of future clinical decompensation.


Asunto(s)
COVID-19/inmunología , Activación Neutrófila , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , COVID-19/sangre , COVID-19/mortalidad , Enfermedad Crítica/epidemiología , Enfermedad Crítica/mortalidad , Estudios Transversales , Femenino , Hospitalización , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Pronóstico , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad
14.
Int J Pharm ; 598: 120350, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33545279

RESUMEN

Lung cancers remain the leading cause of cancer-related death in both men and women. Infiltrating immune cells in the tumor microenvironment (TME) play a critical role in the formation, progression, and the response of solid tumors to therapy, including in lung cancers. Clinical studies have established that tumor-associated macrophages (TAMs) and their phenotypical composition are critical immune infiltrates in the lung TME, with the abundance of the M2-like phenotype negatively correlating with patient survival. Colony-Stimulating Factor 1 (CSF-1) receptor (CSF-1R) is a type III protein tyrosine kinase receptor that plays an important role in the recruitment and differentiation of monocytes into tumor-promoting M2-like TAMs and their survival. In this work we evaluated the therapeutic potential of PLX 3397 (PLX), a small molecule CSF-1R inhibitor (CSF-1Ri), upon local lung administration in an immune-competent mouse model of lung cancer. The efficacy of local lung delivered PLX as single therapy was investigated first. As assessed by immunofluorescence of sections of lung tumor nodules, a statistically significant reduction in M2-like TAMs and an increase in M1-like TAMs was observed, thus leading to a shift in the (M1/M2) balance. Those changes in abundance of immune infiltrates correlated with a significant decrease in tumor burden when compared to control. When combined with systemically administered cisplatin (CIS) PLX treatment provided further benefits, leading to a significant decrease in tumor burden when compared to either PLX or CIS treatments alone, as measured by bioluminescence intensity (BLI) in vivo (thoracic area) and ex vivo (lung tissue). This combination therapy led to the most pronounced increase in M1/M2 ratio, followed by a significant decrease in M2-like TAMs with the CIS therapy. This work is clinically relevant as it demonstrates the potential of local lung administration of PLX to support standard of care chemotherapy for lung cancer management. This is important as the pulmonary route of administration is a plausible strategy for reducing the total dose of CSF-1Ris as the tissue of interest (lungs) can be locally targeted. Because the major off-target effect of CSF-1Ris is liver toxicity, reducing systemic concentration will support translation of those therapies, especially in combination with standard of care chemotherapy that has significant off-target toxicity and patient attrition itself. This work is scientifically relevant as we demonstrate for the first time that local administration of a CSF-1Ri to the lungs leads to a shift in the balance of TAMs in the TME of a model of lung tumor, adding to the sparse literature of CSF-1Ris related to lung cancers.


Asunto(s)
Neoplasias Pulmonares , Macrófagos , Receptor de Factor Estimulante de Colonias de Macrófagos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Cisplatino/administración & dosificación , Cisplatino/farmacología , Humanos , Pulmón , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras , Receptor de Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/farmacología , Microambiente Tumoral , Macrófagos Asociados a Tumores
15.
Pulm Circ ; 10(4): 2045894020966547, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282193

RESUMEN

Increase in thrombotic and microvascular complications is emerging to be a key feature of patients with critical illness associated with COVID-19 infection. While endotheliopathy is thought to be a key factor of COVID-19-associated coagulopathy, markers indicative of this process that are prognostic of disease severity have not been well-established in this patient population. Using plasma profiling of patients with COVID-19, we identified circulating markers that segregated with disease severity: markers of angiogenesis (VEGF-A, PDGF-AA and PDGF-AB/BB) were elevated in hospitalized patients with non-critical COVID-19 infection, while markers of endothelial injury (angiopoietin-2, FLT-3L, PAI-1) were elevated in patients with critical COVID-19 infection. In survival analysis, elevated markers of endothelial injury (angiopoietin-2, follistatin, PAI-1) were strongly predictive of in-hospital mortality. Our findings demonstrate that non-critical and critical phases of COVID-19 disease may be driven by distinct mechanisms involving key aspects of endothelial cell function, and identify drivers of COVID-19 pathogenesis and potential targets for future therapies.

16.
Mol Pharm ; 17(12): 4691-4703, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33170724

RESUMEN

The lungs are major sites of metastases for several cancer types, including breast cancer (BC). Prognosis and quality of life of BC patients that develop pulmonary metastases are negatively impacted. The development of strategies to slow the growth and relieve the symptoms of BC lung metastases (BCLM) is thus an important goal in the management of BC. However, systemically administered first line small molecule chemotherapeutics have poor pharmacokinetic profiles and biodistribution to the lungs and significant off-target toxicity, severely compromising their effectiveness. In this work, we propose the local delivery of add-on immunotherapy to the lungs to support first line chemotherapy treatment of advanced BC. In a syngeneic murine model of BCLM, we show that local pulmonary administration (p.a.) of PLX-3397 (PLX), a colony-stimulating factor 1 receptor inhibitor (CSF-1Ri), is capable of overcoming physiological barriers of the lung epithelium, penetrating the tumor microenvironment (TME), and decreasing phosphorylation of CSF-1 receptors, as shown by the Western blot of lung tumor nodules. That inhibition is accompanied by an overall decrease in the abundance of protumorigenic (M2-like) macrophages in the TME, with a concomitant increase in the amount of antitumor (M1-like) macrophages when compared to the vehicle-treated control. These effects with PLX (p.a.) were achieved using a much smaller dose (1 mg/kg, every other day) compared to the systemic doses typically used in preclinical studies (40-800 mg/kg/day). As an additive in combination with intravenous (i.v.) administration of paclitaxel (PTX), PLX (p.a.) leads to a decrease in tumor burden without additional toxicity. These results suggested that the proposed immunochemotherapy, with regional pulmonary delivery of PLX along with the i.v. standard of care chemotherapy, may lead to new opportunities to improve treatment, quality of life, and survival of patients with BCLM.


Asunto(s)
Aminopiridinas/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Pirroles/administración & dosificación , Macrófagos Asociados a Tumores/efectos de los fármacos , Administración por Inhalación , Administración Intravenosa , Aminopiridinas/farmacocinética , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Línea Celular Tumoral/trasplante , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Femenino , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/secundario , Ratones , Paclitaxel/administración & dosificación , Paclitaxel/farmacocinética , Fosforilación/efectos de los fármacos , Pirroles/farmacocinética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Macrófagos Asociados a Tumores/inmunología
17.
Infect Genet Evol ; 85: 104554, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32927119

RESUMEN

Noroviruses (NoVs) are a major cause of acute non-bacterial gastroenteritis worldwide. In this study, we report the isolation, near-complete genome sequencing, and expression and biological characterization of the major capsid protein (VP1) of a GI.3 NoV isolated from a child presenting acute gastroenteritis. The genome of the GI.3 NoV is 7746 bp in length, not including the poly-adenylation tail. Phylogenetic analysis based on the complete VP1 nucleotide sequences indicates that GI.3 NoVs could be divided into four clusters, with 4.6%, 5.3%, 6.6%, 1.9% intracluster variations in nucleotide and 4.8%, 3.8%, 6.1%, 1.7% intracluster variations in amino acid sequences, respectively. A Bayesian evolutionary analysis showed that GI.3 NoVs evolved at 2.44 × 10-3, 2.78 × 10-3, and 3.04 × 10-3 nucleotide substitutions/site/year using a strict clock model, an uncorrelated log-normal model (UCLN), and an uncorrelated exponential derivation model (UCED), respectively. VP1 protein expression using a recombinant baculovirus expression system leads to the successful assembly of virus-like particles (VLPs). In vitro VLP-Histo-blood group antigen (HBGA) binding assay indicates that GI.3 NoV VLPs strongly bind to blood type A salivary HBGAs, moderately bind to blood type O salivary HBGAs, and weakly bind or do not bind to blood type B and AB salivary HBGAs. In vitro VLP-HBGA binding blockade assay indicated that the binding of GI.3 NoV VLPs to blood type A salivary HBGAs could only be blocked by anti-GI.3 NoV VLPs serum but not non-GI.3 NoV genotype-specific hyperimmune sera (GI.2, GI.7, GII.4, GII.6, GII.7, and GII.17). The detailed characterization of GI.3 NoV in this study provides evidence that GI.3 NoV undergoes rapid evolution and exhibits no cross-blocking effects, suggesting that GI.3 NoV may potentially be utilized in the development of multivalent NoV vaccines.


Asunto(s)
Infecciones por Caliciviridae/virología , Gastroenteritis/virología , Norovirus/clasificación , Norovirus/genética , Secuencia de Aminoácidos , Secuencia de Bases , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/prevención & control , Gastroenteritis/inmunología , Gastroenteritis/prevención & control , Genoma Viral , Genómica/métodos , Interacciones Huésped-Patógeno/inmunología , Humanos , Norovirus/inmunología , Filogenia , Unión Proteica , Vacunas de Partículas Similares a Virus/inmunología , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Vacunas Virales/inmunología
18.
medRxiv ; 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32908988

RESUMEN

Pathologic immune hyperactivation is emerging as a key feature of critical illness in COVID-19, but the mechanisms involved remain poorly understood. We carried out proteomic profiling of plasma from cross-sectional and longitudinal cohorts of hospitalized patients with COVID-19 and analyzed clinical data from our health system database of over 3,300 patients. Using a machine learning algorithm, we identified a prominent signature of neutrophil activation, including resistin, lipocalin-2, HGF, IL-8, and G-CSF, as the strongest predictors of critical illness. Neutrophil activation was present on the first day of hospitalization in patients who would only later require transfer to the intensive care unit, thus preceding the onset of critical illness and predicting increased mortality. In the health system database, early elevations in developing and mature neutrophil counts also predicted higher mortality rates. Altogether, we define an essential role for neutrophil activation in the pathogenesis of severe COVID-19 and identify molecular neutrophil markers that distinguish patients at risk of future clinical decompensation.

19.
medRxiv ; 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32637968

RESUMEN

Despite over 9.3 million infected and 479,000 deaths, the pathophysiological factors that determine the wide spectrum of clinical outcomes in COVID-19 remain inadequately defined. Importantly, patients with underlying cardiovascular disease have been found to have worse clinical outcomes,1 and autopsy findings of endotheliopathy as well as angiogenesis in COVID-19 have accumulated.2,3 Nonetheless, circulating vascular markers associated with disease severity and mortality have not been reliably established. To address this limitation and better understand COVID-19 pathogenesis, we report plasma profiling of factors related to the vascular system from a series of patients admitted to Yale-New Haven Hospital with confirmed diagnosis of COVID-19 via PCR, which demonstrate significant increase in markers of angiogenesis and endotheliopathy in patients hospitalized with COVID-19.

20.
Lancet Haematol ; 7(8): e575-e582, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32619411

RESUMEN

BACKGROUND: An important feature of severe acute respiratory syndrome coronavirus 2 pathogenesis is COVID-19-associated coagulopathy, characterised by increased thrombotic and microvascular complications. Previous studies have suggested a role for endothelial cell injury in COVID-19-associated coagulopathy. To determine whether endotheliopathy is involved in COVID-19-associated coagulopathy pathogenesis, we assessed markers of endothelial cell and platelet activation in critically and non-critically ill patients admitted to the hospital with COVID-19. METHODS: In this single-centre cross-sectional study, hospitalised adult (≥18 years) patients with laboratory-confirmed COVID-19 were identified in the medical intensive care unit (ICU) or a specialised non-ICU COVID-19 floor in our hospital. Asymptomatic, non-hospitalised controls were recruited as a comparator group for biomarkers that did not have a reference range. We assessed markers of endothelial cell and platelet activation, including von Willebrand Factor (VWF) antigen, soluble thrombomodulin, soluble P-selectin, and soluble CD40 ligand, as well as coagulation factors, endogenous anticoagulants, and fibrinolytic enzymes. We compared the level of each marker in ICU patients, non-ICU patients, and controls, where applicable. We assessed correlations between these laboratory results with clinical outcomes, including hospital discharge and mortality. Kaplan-Meier analysis was used to further explore the association between biochemical markers and survival. FINDINGS: 68 patients with COVID-19 were included in the study from April 13 to April 24, 2020, including 48 ICU and 20 non-ICU patients, as well as 13 non-hospitalised, asymptomatic controls. Markers of endothelial cell and platelet activation were significantly elevated in ICU patients compared with non-ICU patients, including VWF antigen (mean 565% [SD 199] in ICU patients vs 278% [133] in non-ICU patients; p<0·0001) and soluble P-selectin (15·9 ng/mL [4·8] vs 11·2 ng/mL [3·1]; p=0·0014). VWF antigen concentrations were also elevated above the normal range in 16 (80%) of 20 non-ICU patients. We found mortality to be significantly correlated with VWF antigen (r = 0·38; p=0·0022) and soluble thrombomodulin (r = 0·38; p=0·0078) among all patients. In all patients, soluble thrombomodulin concentrations greater than 3·26 ng/mL were associated with lower rates of hospital discharge (22 [88%] of 25 patients with low concentrations vs 13 [52%] of 25 patients with high concentrations; p=0·0050) and lower likelihood of survival on Kaplan-Meier analysis (hazard ratio 5·9, 95% CI 1·9-18·4; p=0·0087). INTERPRETATION: Our findings show that endotheliopathy is present in COVID-19 and is likely to be associated with critical illness and death. Early identification of endotheliopathy and strategies to mitigate its progression might improve outcomes in COVID-19. FUNDING: This work was supported by a gift donation from Jack Levin to the Benign Hematology programme at Yale, and the National Institutes of Health.


Asunto(s)
Betacoronavirus/patogenicidad , Trastornos de la Coagulación Sanguínea/patología , Infecciones por Coronavirus/complicaciones , Endotelio Vascular/patología , Neumonía Viral/complicaciones , Enfermedades Vasculares/patología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Trastornos de la Coagulación Sanguínea/etiología , Trastornos de la Coagulación Sanguínea/metabolismo , COVID-19 , Infecciones por Coronavirus/virología , Enfermedad Crítica , Estudios Transversales , Endotelio Vascular/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/virología , Pronóstico , SARS-CoV-2 , Enfermedades Vasculares/etiología , Enfermedades Vasculares/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA